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Abstract

Purpose – To develop a numerical technique for solving the inverse source problem associated with
the constant coefficients convection-diffusion equation.

Design/methodology/approach – The proposed numerical technique is based on the boundary
element method (BEM) combined with an iterative sequential quadratic programming (SQP)
procedure. The governing convection-diffusion equation is transformed into a Helmholtz equation and
the ill-conditioned system of equations that arises after the application of the BEM is solved using an
iterative technique.

Findings – The iterative BEM presented in this paper is well-suited for solving inverse source
problems for convection-diffusion equations with constant coefficients. Accurate and stable numerical
solutions were obtained for cases when the number of sources is correctly estimated, overestimated, or
underestimated, and with both exact and noisy input data.

Research limitations/implications – The proposed numerical method is limited to cases when the
Péclet number is smaller than 100. Future approaches should include the application of the BEM
directly to the convection-diffusion equation.

Practical implications – Applications of the results presented in this paper can be of value in
practical applications in both heat and fluid flow as they show that locations and strengths for an
unknown number of point sources can be accurately found by using boundary measurements only.

Originality/value – The BEM has not as yet been employed for solving inverse source problems
related with the convection-diffusion equation. This study is intended to approach this problem by
combining the BEM formulation with an iterative technique based on the SQP method. In this way, the
many advantages of the BEM can be applied to inverse source convection-diffusion problems.

Keywords Boundary-elements methods, Convection, Numerical analysis

Paper type Research paper

Introduction
Environmental concerns have been the focus of both public and scientific interest for
about four decades, and this interest appears to be increasing. Among these concerns,
water pollution plays a very important role, as water is one of our most important
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natural resources and there are many conflicting demands upon it. All over the world,
rivers and lakes are contaminated by several types of pollution, resulting in high health
risk to people, animals and plants that are exposed to these waters. Knowing the origin
of the source of contamination is probably the most important aspect when attempting
to understand, and therefore to control, the pollution transport process. Thus, a
challenging issue in environmental problems is the identification of sources of
pollution in waters. The aim of this paper is to assist in the development of the
necessary techniques to solve this practical problem, namely the source identification
problem, when having only a limited amount of measurement data taken from the
water. This problem assumes the knowledge of some boundary values for the
concentration and/or its normal derivative on each part of the boundary and also
the existence of some point sources of pollution of unknown location and strength.
With these premises, the location and the strengths of the sources are required to be
found. It is important to note that the method, as presented in this study, can also be
applied to identify unknown heat sources using some temperature and heat flux
boundary values on the boundary of the domain as input data.

Mathematically, the source identification problem is an inverse problem. The
shortest definition of inverse problems describes them as discovering the cause from a
known result. Hence, in fact, all problems of observed data interpretation are inverse.
Inverse problems are concerned with the determination of inputs or sources from
observed/measured outputs or responses, in contrast to direct problems, where the
situation is vice versa.

In this study, the governing equation for the pollution process is taken to be the
steady-state convection-diffusion equation. Different numerical methods for solving
this equation have been used in order to approach both contaminant and heat source
identification problems. In Gorelick et al. (1983), an optimization approach for
identifying sources of groundwater pollution, based on least squares regression and
linear programming for the least absolute error estimation, is employed. Other methods
that may be employed are as follows: probabilistic approaches using random walk
particle methods (Bagtzoglou et al., 1992), stochastic differential equations (Wilson and
Liu, 1994), or Bayesian theory combined with geostatistical techniques (Snodgrass and
Kitanidis, 1997), Tikhonov regularisation (Skaggs and Kabala, 1994),
quasi-reversibility method (Skaggs and Kabala, 1995), minimum relative entropy
(Woodbury and Ulrych, 1996), a Fourier-based inverse technique (Birchwood, 1999),
non-linear least squares method (Alapati and Kabala, 2000), etc. Good literature
reviews on contaminant source identification methods can be found in Atmadja and
Bagtzoglou (2001) and Michalak and Kitanidis (2003).

The boundary element method (BEM) has been successfully employed in order to
solve direct convective heat transfer problems and inverse heat source diffusion
problems. In DeFigueiredo and Wrobel (1990) and Gupta et al. (1994), the BEM
formulations for the steady-state convection-diffusion equation with constant and
variable velocities, respectively, have been investigated when applied to direct
convective heat transfer problems, while in LeNiliot and Lefèvre (2001, 2004), the BEM
for the heat diffusion equation has been combined with an iterative algorithm built to
minimize a cost function in order to solve inverse problems for identifying point heat
sources. The BEM has many advantages when compared to other numerical methods.
Probably one of the most important is the fact that the discretisations are restricted
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only to the boundary, thus reducing the quantity of data necessary to solve a problem.
However, the BEM has not as yet been employed in order to solve inverse source
problems related with the convection-diffusion equation. This study is intended to
approach this very important and interesting problem, with many practical
applications in both heat and fluid flow, by combining the BEM formulation with
an iterative technique based on the sequential quadratic programming (SQP) method.

Mathematical formulation
The practical problem we wish to model in this paper is the case of water pollution
caused by some point sources. A point source pollutant, as opposed to a non-point or
dispersed source pollutant, is one that enters the water from a small pipe, channel, or
some other confined and localised source. Here, small means that the diameter of the
pipe is small compared to the width of the river. The most common example of a point
source of pollutants is a small pipe that discharges sewage into a stream or river.
Although point source pollutants are easier to deal with than non-point source
pollutants, there are many situations when these point sources cannot be localised for a
variety of reasons. Our investigations will focus on these cases, when it is assumed that
the pollution has occurred as a result of some point sources whose strengths and
locations are unknown.

Let us consider a bounded domain V , Rd and we assume that its boundary G
consist of two parts, S1 and S2, such that G ¼ S1 < S2; where S1, S2 – B and S1 >
S2 – B:

The following steady-state convection-diffusion equation with constant coefficients
is considered:

Xd
m¼1

›2c

›x2
m

ðxÞ2
Xd
m¼1

um
›c

›xm
ðxÞ2 kcðxÞ þ

XN s

l¼1

fldðx2 xlÞ ¼ 0; x [ V ð1Þ

where cðxÞ is the concentration of the pollutant, um is the xm component of the fluid
velocity, k is a decay parameter, Ns is the number of sources, d is the Dirac delta
function and fl and xl are the lth source strength and location, respectively. In this
study um and k are assumed to be given constants, while the constants fl and the
vectors xl are to be found based on some given boundary conditions associated with
equation (1). It should be mentioned that if um and k are variable functions then the
standard BEM cannot be employed. The reason for this is that a fundamental solution
for the convection-diffusion operator with variable coefficients is not known. In these
cases other numerical methods could be employed, e.g. the dual reciprocity method.
However, as this paper aims to develop the BEM for the solution of inverse source
convection-diffusion problems, the present study is restricted to the
constant-coefficient case.

Based on the change of variable:

c ¼ v exp
u · x

2

� �
; ð2Þ

where the vector u is defined as u ¼ ðu1; u2; . . . ; udÞ; equation (1) may be recast as
follows:
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Xd
m¼1

›2v

›x2
m

ðxÞ þ m 2vðxÞ ¼ 2exp 2
u · x

2

� �XN s

l¼1

fldðx2 xlÞ; ð3Þ

where x [ V and m ¼ ib is a purely imaginary number with:

b ¼ kþ

Xd
m¼1

u2
m

4

0
BBBB@

1
CCCCA

1=2

: ð4Þ

We assume that associated with equation (3) some boundary conditions are specified
such that information is available on each part of the boundary. This information is
used in order to find the strengths fl and the location xl of the sources of pollution.
In practice, this means that on each part of the boundary of the domain under
investigation some information is known, obtained by either taking measurements or
by imposing physical considerations, e.g. the flux is zero on the banks of a river, while
the point sources of the pollution are unknown and therefore sought. There are
numerous different techniques for measurement and analysis of water contaminants,
i.e. physical, chemical, electrochemical, or bioanalytical methods, chromatography, etc.
for more details, see, for example, Greyson (1990). Mathematically, the boundary
conditions can be written as follows:

vðxÞ ¼ ~vðxÞ; x [ S1; ð5Þ

q ¼
›v

›n
ðxÞ ¼ ~qðxÞ; x [ S2; ð6Þ

where ~v and ~q are prescribed functions of x: It can be seen that on some part of the
boundary both v and ›v=›n are specified, as S1 > S2 – B:

The iterative BEM
The standard BEM procedure using constant boundary elements (CBEs) (Brebbia
et al. 1984) is applied to equation (3) and, using the characteristics of the Dirac
delta function, the following boundary integral equation is obtained for each node i,
i ¼ 1;N :

hivi þ

Z
G

vE 0 dG2

Z
G

qE dG ¼ 2
XN s

l¼1

exp 2
u · xl

2

� �
flEðx; xlÞ ð7Þ

where hi ¼ ai=2p; with ai the angle between the left and the right tangents on G at
the boundary node i for i ¼ 1;N : In particular, if G is smooth then ai ¼ p for
i ¼ 1;N : The function Eðx; yÞ is the fundamental solution for the Helmholtz
operator 72 þ m 2 and is given by:

Eðx; yÞ ¼
i

4
H ð1Þ

0 ðmrðx; yÞÞ; ð8Þ
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where:

rðx; yÞ ¼ jx2 yj ¼
Xd
m¼1

ðxm 2 ymÞ
2

" #1=2

is the geodesic distance and H ð1Þ
0 is the zero-order Hankel function of the first kind,

see, for example, Abramowitz and Stegun (1972).
After integrating over each boundary element, equation (7) can be written in terms

of the nodal values as follows:

hivi þ
XN
k¼1

Hikvk 2
XN
k¼1

Gikqk ¼ 2
XN s

l¼1

I ilfl ; i ¼ 1;N ; ð9Þ

where Hik and Gik are the usual resultants of integration over the boundary elements
(Brebbia et al. 1984), and Iil is specific to the inverse source problem for the steady-state
convection-diffusion equation. Compared to the previous coefficients, the coefficient Iil
is not the result of an integral, its expression being the following:

I il ¼ exp 2
u · xl

2

� �
Eðxi; xlÞ; i ¼ 1;N ; l ¼ 1;N s: ð10Þ

After application to all the boundary nodes i ¼ 1;N ; and incorporating the terms hi

onto the diagonal of H, equation (9) can be expressed in matrix form as follows:

Hv2 Gq ¼ 2If; ð11Þ

where H and G are the N £ N matrices of the coefficients Hik and Gik, v and q are two
vectors of order N containing the boundary values of v and ›v/›n, respectively, I is an
N £ Ns matrix of the coefficients Iil and f is a vector of order Ns containing the values
of strengths of the sources. It should be noted that a similar BEM formulation has been
employed by LeNiliot and Lefèvre (2001) when applied to the heat diffusion equation.

In the two-dimensional case, and when all the boundary values for v and q are
specified ðS1 ¼ S2 ¼ GÞ; then the system of equation (11) contains N equations and
3Ns unknowns, namely xl, yl and fl for l ¼ 1;N s: When some of the boundary values
for v and q are not known (S1 – S2), then those values will act as unknowns in the
system of equation (11), making the number of unknowns greater than 3Ns.

It is observed that only the strengths of the sources appear linearly in the system of
equation (11), while the locations of the sources appear as non-linear unknowns. In the
following, we briefly present the iterative procedure used to solve the non-linear
system of equation (11):

. Choose an initial guess for the locations (x0
l ; y

0
l ) and the strengths f0

l of the
sources of pollution, where l ¼ 1;N s: This initial guess should be made in such a
way that some bounds on the unknown variables are satisfied, namely
(x0

l ; y
0
l ) [ V and f0

l $ 0; for l ¼ 1;N s; as the location of the source should be
inside the solution domain and the strength of the source a positive real number.

. Separate the boundary conditions into two categories. The first set of boundary
conditions contains the minimum number of boundary conditions, which
generate a well-posed direct problem when combined with the governing
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Helmholtz equation (3) and the initial guesses for the unknown variables made in
the first step. This set of boundary conditions is used to form a constant vector
vA: The second set of boundary conditions contains the information that is not
necessary for solving the direct problem. These boundary conditions form a
constant vector, denoted by vB; that is used in the stopping criterion of the
iterative procedure.

. A positive real function of 3Ns variables, called the objective function, is defined
as follows:

Fðxl ; yl ;flÞ ¼ kvðxl ;yl ;fl Þ 2 vBk
2
; l ¼ 1;N s; ð12Þ

where the vector vðxl ;yl ;fl Þ contains some of the numerical results for v and q
obtained by solving the direct problems considered at each iteration, chosen such
that the difference from the definition of the function F given in expression (12) is
relevant.

. Solve the non-linear programming problem that is the minimization of the
smooth function F subject to some bounds on the variables using a SQP method.
This minimization problem is stated in the following form:

Minimize Fðxl ; yl ;flÞ subject to
ðxl ; ylÞ [ V

fl $ 0
; l ¼ 1;N s

(
: ð13Þ

This problem is solved using the NAG Fortran subroutine E04UCF, see NAG Fortran
Library Manual, Mark 20. The numerical solution of the problem (13) is obtained
iteratively by this subroutine containing both the value of the function F and the values
of the variables xl, yl and fl for l ¼ 1;N s; where the function F reaches its minimal
value. These last values also represent the numerical solution for our inverse source
problem. This subroutine allows the user to change the accuracy of the numerical
solution by modifying an optimality tolerance parameter. Broadly speaking, this
parameter indicates the number of correct figures desired in the objective function F at
the solution. For example, if the optimality tolerance parameter is 1027 and E04UCF
terminates successfully, the final value of the objective function F should have
approximately seven correct figures. We mention here that in all the test examples
considered the optimality tolerance parameter was taken to be equal with the machine
precision, namely approximately 10216. For more details on the SQP method used by
the NAG subroutine E04UCF (Powell, 1974; Gill et al., 1981).

Similar approaches for solving a non-linear system of equations that arises from the
application of the BEM to an inverse problem have been used for other problems (Mera
and Lesnic, 2003), where this procedure has been employed in order to identify the
geometry of the discontinuities in a conductive material with anisotropic
conductivities.

Numerical results and discussion
In this section, we investigate several examples in order to test the method proposed in
the previous section for solving the inverse source problem associated with the

HFF
16,2

130



steady-state convection-diffusion equation. The solution domain for all the examples
presented herein is chosen to be the rectangular domain V ¼ {ðx; yÞ : 22 , x , 2;
21 , y , 1} bounded by the rectangle G ¼ G1 < G2 < G3 < G4; where G1 ¼
{2}£ ð21;1Þ; G2 ¼ ðð22;2Þ£ {1}Þ; G3 ¼ {2 2}£ ð21;1Þ and G4 ¼ ðð22;2Þ£ {2 1}Þ:
This geometry is intended to approximate a region of a polluted river from one or more
pollutant point sources. We consider several examples whose analytical solution is
known, such that a comparison between the numerical results obtained by the method
and some exact solutions can be made. In the two-dimensional case, when the
boundary conditions (5) and (6) are imposed, the following analytical solutions for
equations (1) and (3), respectively, are used:

cðx; yÞ ¼
XN s

l¼1

fl

2p
exp

u1ðx2 xlÞ þ u2ð y2 ylÞ

2

� �
K0ðbrlÞ ð14Þ

and

vðx; yÞ ¼
XN s

l¼1

fl

2p
exp 2

u1xl þ u2 yl
2

� �
K0ðbrlÞ; ð15Þ

where b is given by expression (4), rl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 xlÞ

2 þ ð y2 ylÞ
2

p
and K0 is the modified

Bessel function of order zero (Abramowitz and Stegun, 1972).
The method assumes that the number of sources, Ns, is estimated a priori and

therefore, we divide the numerical results presented in this section into three different
subsections, in terms of how accurate is this estimation, namely when the number of
sources is estimated correctly, overestimated, or underestimated.

Some limitations of the method which are related with the value of the Péclet
number of the flow under investigation are presented and explained, and finally some
further analysis of the numerical results are presented.

Number of sources correctly estimated
Example 1
The first example investigated is intended to model the case of a section of river
contaminated by a single source of pollution. Mathematically, the process of polluting
the water is assumed to be governed by the following steady-state convection-diffusion
equation:

72cðx; yÞ2 2
›c

›x
ðx; yÞ þ

1

2

›c

›y
ðx; yÞ2

1

2
cðx; yÞ þ 2dððx; yÞ; ð20:5; 0:5ÞÞ ¼ 0; ð16Þ

where ðx; yÞ [ V: The flow velocity has a dominant x component and the source is
located at the point (20.5, 0.5) with a strength of 2.

Using the change of variable:

c ¼ v exp
4x2 y

4

� �
; ð17Þ
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equation (16) can be recast as follows:

72vðx; yÞ2
25

16
vðx; yÞ ¼ 22 exp 2

4x2 y

4

� �
dððx; yÞ; ð20:5; 0:5ÞÞ: ð18Þ

We assume that it is known that there is only one source of pollution and that, either
from measurements or by making use of some physical results, c is specified on
S1 ¼ G1 < G2 < G3 and ›c/›n is specified on S2 ¼ G2 < G4: We observe that S1 <
S2 ¼ G and S1 > S2 ¼ G2 – B: In practical problems, the flux ›c/›n on the banks of
the river is equal to 0 and therefore, it is natural to consider the values of q on S2 as
known. In this example, we also assume that the concentration can be measured at
some points upstream (on G3) and downstream (on G1) of the source of pollution and at
some points on one side of the river (on G2). It should be mentioned here that if c and
›c/›n are specified at some points, then the values of v and q, respectively, at those
points are also known by employing the change of variable (17). The values of the
concentration on G1 and G3 and the values of the flux on G2 and G4 are all required to
form and to solve a direct problem, while the values of the concentration on G2

represent the concentrations at the sampling points. In these circumstances, we wish to
find the location and the strength of the source of pollution.

Having specified the boundary conditions for the inverse source problem, the
analytical solutions for equations (16) and (18) are given by:

cðx; yÞ ¼
1

p
exp

4ðxþ 0:5Þ2 ð y2 0:5Þ

4

� �
K0

5

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 0:5Þ2 þ ð y2 0:5Þ2

q� �
ð19Þ

and

vðx; yÞ ¼
1

p
exp

2:5

4

� �
K0

5

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 0:5Þ2 þ ð y2 0:5Þ2

q� �
; ð20Þ

respectively. The case investigated in this example is shown by Figure 1.
First the problem is solved in the case when exact input data are used, i.e. there are

no noise in the data. The domain is discretised using 60 CBEs, i.e. 10 elements on G1,

Figure 1.
Lines of constant c as
given by the analytical
solution for the problem
considered in example 1
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20 on G2, 10 on G3 and 20 on G4. The iterative BEM proposed is now applied. The first
step is to choose an initial guess for the three unknowns, for example, x0

1 ¼ 0; y0
1 ¼ 0

and f0
1 ¼ 0; such that x0

1; y
0
1 [ V and f0

1 $ 0: Then the boundary conditions are
separated into two categories, each category being used to define two new vectors,
namely vA containing the boundary values of v on G1 < G3 and the boundary values of
q on G2 < G4; and vB containing the boundary values of v on G2. It should be noted that
the vector vB contains the observed values of v at the sampling locations, which in this
case were all situated on the boundary G2, i.e. the 20 boundary element nodes from G2.
The next step is to define the objective function F as in expression (12). The vector
vðx1;y1;f1Þ from equation (12) contains, in this case, the numerical results for the
boundary values of v on G2 obtained by solving at each iteration the direct mixed
problem defined by equation (18) and the following boundary conditions: v specified on
G1 < G3 and q specified on G2 < G4: At the first iteration, the direct mixed problem
uses the initial guesses as the values for the location and strength of the source. The
NAG subroutine E04UCF is applied at this point and for each following iteration the
location and strength of the source are those calculated at the previous iteration. The
results obtained for the three unknowns are shown in Table I. It can be seen that even if
only 60 boundary elements are employed, the numerical results are very accurate for
all three unknowns and thus it can be said that the iterative procedure is accurate and
convergent.

We wish now to investigate the stability of the method, and therefore the boundary
values of v are perturbed by adding random noise as follows:

v ¼ vþ dv; dv ¼ G05DDFð0;sÞ; s ¼ jvj
p

100
; ð21Þ

where dv is a Gaussian random variable with mean zero and standard deviation s,
generated by the Fortran NAG subroutine G05DDF and p is the percentage of added
noise. In a practical problem, the boundary values of q on G2 < G4 are not obtained
from measurements, but from a physical result, namely the flux is zero on the banks of
the river, and therefore they are not perturbed. For the same discretisation, namely
when 60 CBEs are employed, the results are shown in Table I.

It is observed that the results remain very accurate even when noisy input data is
used, such that both the location and the strength of the source of pollution are
identified precisely, e.g. when 3 per cent noise is added the error in x1, y1 and f1 is less
than 0.04, 3.47 and 3.2 per cent, respectively. For the other amounts of added noise, the
error in x1 remains very small, while the errors in y1 and f1 are very close to the
percentage of noise that was added into the input data. The fact that x1 is found more

Exact
solution

Initial
guess

0 per cent
noise

1 per cent
noise

3 per cent
noise

5 per cent
noise

10 per cent
noise

x1 20.5 0 20.5 þ O(102 9 ) 20.4999 20.4998 20.4997 20.4997
y1 0.5 0 0.5 þ O(1029 ) 0.5057 0.5173 0.5290 0.5592
f1 2 0 2 þ O(102 8) 1.9787 1.9363 1.8940 1.7891
F(x1, y1, f1) 2.2 £ 10216 5.9 £ 1025 5.3 £ 102 4 1.4 £ 1023 5.7 £ 1023

Number of
iterations 19 19 18 18 16

Table I.
The numerical results

obtained using 60 CBEs
and input data with

0, 1, 3, 5 and 10 per cent
noise, for example 1
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accurately than the other two unknowns is only due to this particular example, as in
other test examples the accuracy of the numerical solution was almost the same for all
the three unknowns. We can also see that the smaller the noise present in the input
data, the more accurate the numerical solution, and this indicates the stability of the
method.

It should be mentioned here that it is not necessary that all the sampling locations
be taken on the boundary of the solution domain. Several examples have been
investigated for the cases when the sampling points are located inside the solution
domain. In these cases S1 > S2 ¼ B and the vector vB contains the values of the
variable v at the sampling points. The iterative BEM has to be slightly modified in this
case, as the objective function has to evaluate the differences between the internal
values of v at the sampling points and the internal values of v obtained at each
iteration.

To illustrate the type of results obtained for the case when internal sampling
locations are considered, we have investigated the same pollution problem governed by
equation (16). The boundary conditions consist in specifying c on G1 and G3, and ›c=›n
on G2 and G4. Also, the values of the concentration c (and thus values of v) at the
following sampling locations are considered to be known: (21.75, 20.75), (21.5,
20.75), (21.25, 20.75), (21, 20.75), (20.75, 20.75), (20.5, 20.75), (20.25, 20.75),
(0, 20.75), (0.25, 20.75), (0.5, 20.75), (0.75, 20.75), (1, 20.75), (1.25, 20.75), (1.5,
20.75) and (1.75, 20.75). The numerical results obtained in this case are shown in
Table II.

It can be seen that the numerical results are very similar with those shown in Table I
for the case when all the sampling points were located on the boundary G2. However,
the values of the objective function are smaller due to the fact that in this case we had
15 sampling points, as opposed to the 20 sampling points considered when
boundary-sampling locations were considered. Further, it should be remembered that
the objective function is equal to the summation of the squares of the differences
between the values of v at the sampling points and the values of v calculated by the
direct problem at the last iteration.

Many other sampling locations were considered and in all the cases the method was
able to identify an accurate and stable numerical solution. The only problem occurs
when the source is very close to one of the boundaries, e.g. G2, and all the sampling
points are considered on the opposite boundary, e.g. G4. In these cases, if the strength of
the source is not large enough to send relevant information to the boundary where the
sampling points are located, G4, then the method is unable to provide a good numerical

Exact
solution

Initial
guess 0 per cent noise

1 per cent
noise

3 per cent
noise

5 per cent
noise

10 per cent
noise

x1 20.5 0 20.5 þ O(1029) 20.4999 20.4997 20.4997 20.4996
y1 0.5 0 0.5 þ O(1029) 0.5057 0.5172 0.5291 0.5595
f1 2 0 2 þ O(1028) 1.9787 1.9363 1.8940 1.7893
F(x1, y1,
f1) 1.7 £ 10216 4.5 £ 1025 4.0 £ 1024 1.1 £ 1023 4.3 £ 1023

Number of
iterations 22 22 22 22 22

Table II.
The numerical results
obtained using 60 CBEs
and input data with 0, 1,
3, 5 and 10 per cent noise,
for the internal sampling
points case for example 1
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solution. However, these situations can be avoided by considering sampling locations
on both banks, namely G2 and G4.

Also it should be mentioned that when other initial guesses were considered then
the same numerical results were obtained. The only difference is in the number of
iterations that were needed by the iterative BEM in order to reach the numerical
solution.

We wish to report that examples considering two and three sources have also
been investigated and the same conclusion has been reached, namely the proposed
iterative technique is convergent and stable and provides very accurate numerical
solutions in cases when the a priori estimation for the number of sources is
correct.

Number of sources overestimated
Example 2
This example investigates the case when three point sources are expected to be found,
but the real situation corresponds to the pollution being caused by only two point
sources. We wish to present the way in which the method deals with this type of
situation and to compare the results with those obtained in the case when the number
of sources was correctly known.

We consider that the process of pollution is governed by the following steady-state
convection-diffusion equation:

72cðx; yÞ2
›c

›x
ðx; yÞ2

1

2
cðx; yÞ

þ
3

2
dððx; yÞ; ð21:5; 0:7ÞÞ þ dððx; yÞ; ð21;20:5ÞÞ ¼ 0;

ð22Þ

where ðx; yÞ [ V; which corresponds to the following equation:

72vðx; yÞ2
3

4
vðx; yÞ ¼ 2exp 2

x

2

� �
2

3

2
dððx; yÞ; ð21:5; 0:7ÞÞ2 dððx; yÞ; ð21;20:5ÞÞ

� �
:

ð23Þ

The same boundary conditions as in the previous example are prescribed, namely
v is specified on S1 ¼ G1 < G2 < G3 and q is specified on S2 ¼ G2 < G4: The
expressions of the analytical solutions for the partial differential equations (22)
and (23) are obtained using the general expressions (14) and (15) in the following
form:

cðx; yÞ ¼
1:5

2p
exp

xþ 1:5

2

� �
K0

ffiffiffi
3

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 1:5Þ2 þ ð y2 0:7Þ2

q !

þ
1

2p
exp

xþ 1

2

� �
K0

ffiffiffi
3

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 1Þ2 þ ð yþ 0:5Þ2

q ! ð24Þ
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and

vðx; yÞ ¼
1:5

2p
exp

1:5

2

� �
K0

ffiffiffi
3

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 1:5Þ2 þ ð y2 0:7Þ2

q !

þ
1

2p
exp

1

2

� �
K0

ffiffiffi
3

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 1Þ2 þ ð yþ 0:5Þ2

q !
;

ð25Þ

respectively. The situation investigated in this example, namely the case of
pollution caused by two point sources at different locations and of different
strengths, is shown by Figure 2.

On taking again 60 CBEs for the discretisation and all the unknowns to be zero as
an initial guess, then the numerical results obtained when exact input data is used are
presented in Table III.

We observe that the method provides very good results, by identifying the three
sources as follows: the first two sources represent with an accuracy of at least O(1028)
the two real sources given by the exact solution for x1, y1, f1 and x2, y2, f2, while a third
source is found at some point inside the domain, but with a very small strength which
is O(10210). It should be mentioned that the same very good accuracy has been
obtained as when the number of sources was correctly estimated. However, to achieve
this good accuracy in this example, namely when the number of sources is
overestimated, 74 iterations were performed, resulting in a much larger computational
time than that for the 37 iterations required to achieve the same very good accuracy
when the method correctly knows the number of sources. Also, if the number of
sources is overestimated then the matrix I and the vector f from equation (11) have a
higher dimension, and therefore, their storage occupies more computational memory
and their use in the mathematical operations requires more computational time.

When different initial guesses for the nine unknowns were considered, the three
sources found by the method were such as one source represented very accurately the
first real source given by the exact solution for x1, y1 and f1. The other two sources
were found to be almost at the same location, with an error of O(1025) in the location of

Figure 2.
Lines of constant c as
given by the analytical
solution for the problem
considered in example 2
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Table III.
The numerical results

obtained using 60 CBEs
and input data with 0, 1,

3, 5 and 10 per cent noise,
for example 2
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the second real source given by the exact values for x2 and y2. Also, the summation of
their strengths approximated with an error of O(1028) the second real source strength
given by the exact value for f2.

Several examples have been investigated for the case when the method assumes
the existence of two sources, but in reality there is only one. Two contrasting types
of results have been obtained, depending on the example being considered. The first
type found two sources at virtually the same location, the sum of their strengths
being equal within about O(1028) to the value of the source strength we wish to
identify. The second type also found two sources, one of them being the real source,
while the other source was identified at a random location inside the solution
domain but with a very small strength, e.g. strength which is O(10210). Therefore,
we may conclude that the method deals very well with the situation when the
number of sources is overestimated, the only inconvenience being that more
computational time is required than in the case when the number of sources is
known correctly.

The case when noisy input data is considered is now investigated and the results
obtained are also shown in Table III. The stability of the numerical solution has again
been demonstrated. We mention that only when 1 per cent noise was added into the
input data was the number of iterations significantly higher than the number of
iterations performed in the case when the method correctly assumed the existence
of only two sources. When more noise is added into the input data then the number of
iterations are almost equal, although it is still larger for the case when the method
wrongly assumes the existence of three sources. However, when a different initial
guess was employed, the difference between the number of iterations required to
achieve a good accuracy in the two cases was more significant.

Number of sources underestimated
Example 3
This third example investigates the case of pollution caused by three different point
sources, when the method wrongly assumes the existence of only two sources.
Therefore, the governing convection-diffusion equation is taken to be the following:

72cðx; yÞ2
›c

›x
ðx; yÞ2

1

2
cðx; yÞ þ

3

2
dððx; yÞ; ð21:5; 0:7ÞÞ

þ dððx; yÞ; ð21;20:5ÞÞ þ
6

5
dððx; yÞ; ð1; 0:5ÞÞ ¼ 0;

ð26Þ

where ðx; yÞ [ V: The convection-diffusion equation (26) corresponds to the following
equation:

72vðx; yÞ2
3

4
vðx; yÞ ¼ 2 exp 2

x

2

� �
2

3

2
dððx; yÞ; ð21:5; 0:7ÞÞ

�

2dððx; yÞ; ð21;20:5ÞÞ2
6

5
dððx; yÞ; ð1; 0:5ÞÞ

�
:

ð27Þ

We assume that v is specified on S1 ¼ G1 < G2 < G3 and q is specified on S2 ¼
G2 < G4; which are the same type of boundary conditions used in examples 1 and 2.
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With these boundary conditions the analytical solutions for the partial differential
equations (26) and (27) are the following:

cðx; yÞ ¼
1:5
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and
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q !
;

ð29Þ

respectively. Figure 3 shows the case investigated in this example, namely the
pollution caused by three point sources at different locations and of different strengths.

The boundary is discretised by employing 60 CBEs and the initial guesses are taken
to be x0

1 ¼ 0; y0
1 ¼ 0; f0

1 ¼ 0; x0
2 ¼ 0; y0

2 ¼ 0; f0
2 ¼ 0: At each iteration, a mixed direct

problem of the type presented in example 1 is solved. Exact input data is initially
used and, after 38 iterations, the method generates the following numerical solution:

Figure 3.
Lines of constant c as

given by the analytical
solution for the problem
considered in example 3
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x0
1 ¼ 20:76; y0

1 ¼ 20:099; f0
1 ¼ 2:27; x0

2 ¼ 21:55; y0
2 ¼ 0:75; f0

2 ¼ 1:12; with the final
objective function Fðxl ;fl

Þ ¼ 4:37 £ 1021; l ¼ 1; 2: If the optimality tolerance
parameter is increased the method will perform less iterations and the value of the
objective function will be higher than 4.37 £ 1021. However, we reiterate the fact that
in all the examples presented in this paper, we have used the smallest possible value
for the optimality tolerance parameter, namely the value of the machine precision, and
therefore the numerical results cannot be further improved using this method. Other
initial guesses were considered and almost the same numerical solution and final
objective function were obtained, the differences being O(1029). It is clear that this is
not the solution for the problem, however, the method provides the solution for a case
of pollution caused by two point sources that best fits the real situation, namely the
pollution caused by three point sources. Figure 4 shows the similarity between the two
cases. We have denoted with s the coordinate along the boundary of the solution
domain, defined as s ¼ i=N ; where i is the current number of the boundary node. The
numbering of the boundary elements was undertaken such that the first boundary
element starts at (2, 21) and then the anticlockwise direction is followed. Therefore, for
example, s ¼ 0 corresponds to the middle of the element starting at (2, 2 1), and
s ¼ 0.5 corresponds to the middle of the element starting at (22, 1).

It is observed that although the values of the concentration for the assumed two
sources case and for the given three sources case, respectively, are similar, there is still
a significant difference on some parts of the boundary.

In a practical problem, when the number of sources is unknown, the final value of
the objective function seems to be a very effective indicator of how relevant is the
numerical solution of the method. In all the cases when the number of sources is
correctly known, or when it is overestimated, the numerical solution obtained was very
accurate and the objective function could be made O(10215) or even smaller. In this
case, when the number of sources is underestimated then the value of the final

Figure 4.
The numerical results for v
on G obtained using 60
CBEs when only two
point sources are assumed
(– – –), but the analytical
solution (–) given by the
expression (29) is for the
case when there are three
sources
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objective function is much larger, namely 4.37 £ 1021, which indicates that the
numerical solution, although it is the best solution that can be obtained if only two
sources are assumed, it is not an accurate solution for the problem.

Noisy input data has been investigated and very similar values for the location and
strength of the source were obtained, as in the case when exact input data was
employed. For example, when 10 per cent noise is added into the input data, the
numerical solution obtained after 34 iterations is x0

1 ¼ 20:78; y0
1 ¼ 20:10; f0

1 ¼ 2:26;
x0

2 ¼ 21:53; y0
2 ¼ 0:77 and f0

2 ¼ 1:10; and the final objective function is Fðxl ;fl
Þ ¼

5:02 £ 1021; l ¼ 1; 2: We recall that when the number of sources was either known, or
overestimated, and data with 10 per cent noise was employed, then the final objective
function was O(1023) or O(1022), respectively, which is at least one order of
magnitude smaller than that obtained in this case. When less noise was considered
then the difference between the final objective functions for the case when the number
of sources was either known, or overestimated and the final objective function for the
case when the number of sources was underestimated was even larger. Hence, we may
conclude that even if the input data contains noise, the final value of the objective
function can play the role of an indicator as to how relevant is the numerical solution.

Large Péclet number
In a practical convection-diffusion problem, the parameter that describes the relative
influence of the convective and diffusive components is the Péclet number, Pe ¼
UL=D; where U is a typical flow velocity, L a reference length and D the diffusivity.
Throughout this paper, for simplicity, the convection-diffusion equation (1) has been
considered in its non-dimensional form. For all the examples presented, the solution
domain has been chosen to be the rectangular domain V ¼ {ðx; yÞ : 22 , x , 2;
21 , y , 1} in order to model a section of a river and the x component of the fluid
flow velocity has been considered to take different small values, namely 1 and 2,
making the values of the Péclet numbers 4 and 8, respectively. In these cases we have
shown that the numerical method proposed in this paper is able to obtain a very
accurate and stable numerical solution for the inverse source problem.

It is important to note that the same accurate and stable results have been obtained
for values of the non-dimensional fluid flow velocity which were up to 25, which makes
the value of the Péclet number to be #100. We have also investigated some problems
with a larger flow velocity, namely 30, 40 and 50, and the only way we were able to
solve such problems has been by reducing the solution domain. In this way, the method
proved to be very effective. However, if the reduction of the domain cannot be achieved
in such a way that it balances the large values for the fluid flow velocity (the case of
Pe . 100), then the method presented in this paper fails. The reason for the failure of
this method is the change of variable in equation (2), which transforms our
non-dimensional convection-diffusion equation (1) into the Helmholtz equation with a
source term equation (3). For very large values of the fluid flow velocity, this
transformation concentrates all the large values of the function v to locations very close
to the pollution source, while in the other parts of the solution domain the function v
takes very small values. In this way, the values of v on the boundaries become smaller
than the machine precision (10216) and the computer is unable to use them in
mathematical operations. These boundary values represent the only input data used by
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the method, and the impossibility of storing their exact values causes the failure of the
method.

If the iterative procedure was combined with the BEM applied directly to the
convection-diffusion equation, and not to the Helmholtz equation, then it might be
possible that the method would be able to solve the inverse source problem for values
of the Péclet number larger than 100. Another way of overcoming this problem could
be a more general approach, where the iterative procedure combines with the DRBEM
in order to solve the inverse source problem associated with the steady-state
convection-diffusion equation with variable coefficients.

Finally, it should be noted that if the pollution occurs in rivers with large values of
the fluid flow velocity, for which the flow becomes turbulent, then the turbulent
diffusivity becomes large, and hence it may limit the turbulent Péclet number to O(102).

Further analysis of the numerical results
In this section, we wish to investigate in more detail some features of the numerical
solutions provided by the proposed iterative BEM in different situations.

Example 4
This example considers the same case of pollution caused by two sources that was
investigated in example 2. Thus the governing convection-diffusion equation is taken
to be equation (22). In this example, we assume that sampling points are considered on
the boundary collocation nodes over the entire boundary G. As we have seen, the
method can successfully deal with this type of situation not only when the number of
sources Ns is correctly estimated, but also when it is over or underestimated. In all
three cases the method provides numerical results for the locations and strengths of
two sources. When Ns is taken to be at least 2, i.e. Ns is correctly or overestimated, then
the numerical solution was found to be very accurate and stable. When Ns is taken to
be 1, then the method provides a numerical solution that best bits the input data.

After a numerical solution is obtained, regardless of the quality of the estimation of
Ns, a direct problem can be solved to obtained v on the boundary G. The values of v at
the boundary collocation points obtained by solving direct problems in this way can
then be compared with the values of v at the sampling points which are used as input
data.

Figures 5 and 6 show the numerical values of v on the boundary G obtained by
solving direct problems after the inverse problems suggested the locations and
strengths of the pollution sources for cases when N s ¼ 1; 2; 3 and 4. These values of v
are compared with the exact values of v (before the addition of the noise) that are used
as input data by the inverse problems. Figure 5 is for the case when 5 per cent noise
was added into the exact input data, while Figure 6 shows the case when 10 per cent
noise was added into the exact input data.

As expected, it can be seen that if Ns is correctly or overestimated, then the
numerical v calculated by solving direct problems after the identification of the two
sources of pollution are very close to the exact values of v. On the other hand, when Ns

is underestimated, the calculated and exact values of v are very different, especially on
some parts of the boundary.
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The same phenomenon is observed by analysing the final objective functions and the
standard deviations s(v) of the calculated values of v in the four cases, namely when
N s ¼ 1; 2; 3 and 4 (Table IV).

We observe that for large amounts of input noise, e.g. 10 per cent, the objective
function is slightly smaller when Ns is overestimated than the value of the objective

Figure 5.
The numerical results for v

on G obtained using 60
CBEs when 5 per cent
noise is added into the

input data for N s ¼ 1ðBÞ;
N s ¼ 2ðWÞ; N s ¼ 3ðDÞ;

N s ¼ 4ð£Þ and the exact
values for v used as input

data (–) in example 4

Figure 6.
The numerical results for v

on G obtained using 60
CBEs when 10 per cent
noise is added into the

input data for N s ¼ 1ðBÞ;
N s ¼ 2ðWÞ; N s ¼ 3ðDÞ;

N s ¼ 4ð£Þ and the exact
values for v used as input

data (–) in example 4
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function when Ns is correctly estimated. This is due to the fact that an extra dummy
source with a very small strength can adjust the errors that are present in the noisy
input data. However, as we have seen in the case investigated in example 2, the real
situation is clearly indicated by the numerical solution and there is no danger of
confusing the dummy source with a real source. We also mention that the standard
deviations of the input values of v when 5 and 10 per cent noise are added into the exact
input data are 4.97 and 9.95 £ 1023, respectively. Therefore, as expected, the standard
deviations of the calculated values of v in the cases when Ns is correctly or
overestimated (and when a relevant numerical solution is obtained) are of the same
order of magnitude with the noise, while for the underestimated case (when a
non-relevant numerical solution is obtained), the standard deviation is higher.

Example 5
In this example, we wish to investigate if there are any correlations between the
estimated parameters. Therefore, two cases of pollution caused by two sources are
considered. The first one (denoted by 5a) is taken to be governed by the equation (22)
from example 2, while the other one (denoted by 5b) is considered to be governed by the
following convection-diffusion equation:

72cðx; yÞ2
›c

›x
ðx; yÞ2

1

2
cðx; yÞ

þ 2dððx; yÞ; ð21:5;20:5ÞÞ þ
3

2
dððx; yÞ; ð1; 0:6ÞÞ ¼ 0;

ð30Þ

where ðx; yÞ [ V:
The same type of boundary conditions and sampling points as those from example 4

are considered. The iterative BEM is employed 104 times to obtain numerical
solutions for each of the two cases considered. Each time, the input values of v are
perturbed by the addition of 10 per cent random noise. In this way two large matrices
of solutions are obtained, one for each case. Both matrices have six columns
representing the six parameters that need to be identified in a two-source pollution
case, namely x1, y1, f1, x2, y2 and f2, and 104 rows, one for each identification problem.

We wish now to investigate some possible correlations between couples of
estimated parameters in both cases. Table V shows the values of the correlation
coefficients for all the couples of estimated parameters in the cases 5a and 5b.

It can be seen that although some parameters seem to be highly correlated in case
5a, e.g. f1 and f2, this high correlation is not found in case 5b. In fact this can also be
observed by plotting the values of f2 as a function of f1 for all the 104 estimations in
both cases (Figure 7). Many examples have been investigated and in some of them

5 per cent noise 10 per cent noise
Fðxl ;fl

Þ; l ¼ 1; 2 s(v) Fðxl ;fl
Þ; l ¼ 1; 2 s(v)

N s ¼ 1 0.87 6.19 £ 1022 1.38 6.34 £ 1022

N s ¼ 2 5.11 £ 1023 4.85 £ 1023 1.25 £ 1021 9.75 £ 1023

N s ¼ 3 5.11 £ 1023 4.85 £ 1023 1.23 £ 1021 9.75 £ 1023

N s ¼ 4 5.11 £ 1023 4.85 £ 1023 1.23 £ 1021 9.75 £ 1023

Table IV.
The objective function
and the standard
deviation for the
calculated values of v for
the cases considered in
example 4
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certain estimated parameters were found to be highly correlated. However, no general
rule of correlation was observed, the conclusion being that these correlations are a
random feature of the source identification problems.

Example 6
In this final example, we concentrate on the case of one-source pollution case governed
by the following equation:

72cðx; yÞ2
›c

›x
ðx; yÞ2

1

2
cðx; yÞ þ dððx; yÞ; ð21;20:5ÞÞ ¼ 0; ð31Þ

where ðx; yÞ [ V: We assume that in this case Ns is correctly estimated, namely it is a
priori known that there is a single source of pollution. The boundary conditions and
sampling points are considered the same as those from example 1. We also mention
that the input data is perturbed by the addition of 10 per cent random noise.

As it was showed in example 1, the method deals very well with situations of this
type, a very accurate and stable numerical solution being obtained. We wish now to
focus our investigations on how sensitive is the objective function to changes in the
location of the pollution source. Therefore, 3,081 points uniformly distributed inside the
domain V were considered and, associated with these, 3,081 different inverse problems
were solved. Each of these inverse problems considers that the source of pollution is
enforced to be located at each of the 3,081 interior points, respectively. The same
boundary conditions and sampling points were maintained for all inverse problems.
Thus, each of these inverse problems is only concerned with finding the intensity of the
source situated at a particular location that would best fit the values of the
concentration at the sampling points. Of course, we expect to obtain the real source
strength and the smallest objective function in the case when the location of the source
is taken to be exactly the correct one. However, it is interesting to see what values the
objective function takes when the source of pollution is enforced to be at a wrong
location.

Figure 8(a) and (b) shows the contour plots of the objective functions and the source
strengths, respectively, obtained by solving the above mentioned 3,081 inverse
problems. It should be noted that the minimal value of the objective function is 0.005,

y1 f1 x2 y2 f2

Case 5a
x1 20.42 0.75 20.07 20.57 20.68
y1 0.81 20.44 0.65 0.78
f1 0.30 20.86 20.97
x2 20.30 20.22
y2 0.91
Case 5b
x1 0.50 0.11 20.63 20.33 20.14
y1 20.13 20.43 20.29 20.01
f1 0.56 0.57 20.73
x2 0.71 20.35
y2 20.67

Table V.
The correlation

coefficients for all the
couples of estimated

parameters in example 5
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Figure 7.
Plot of f2 as a function of
f1 for cases 5a and 5b, for
example, 5
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and it is obtained when the source is enforced to be situated at its real location, namely
at the point (21, 20.5). It can be seen that although a solution is found for each of the
3,081 inverse problems, the objective functions significantly increase when the source
is enforced to be located far from the real location. From Figure 8(b) it can be observed
that at the real source location the strength that best fits the input values of the
concentration at the sampling points is equal, within an accuracy that was discussed in
example 1, with the real source strength, namely 1. Also we can see that there are other
points for which the best fitting strength is found to be 1. However, for these other
points, the corresponding objective function is much larger, as it can be seen on
Figure 8(a).

If we enlarge the region from Figure 8(a) where the objective function takes the
smallest values, i.e. close to the real source location, it can be seen how sensitive the
objective function is to even small changes in the enforced source location. This means
that if a particular inverse problem is solved by minimizing the corresponding
objective function, then the numerical solution for the location of the source will be in a
small vicinity of the real location (Figure 9).

Figure 8.
Contour plots of (a) the

objective function, and (b)
the source strengths, for
different enforced source
locations inside V when

the real source is located at
(21, 20.5) and has

strength 1, in example 6
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Conclusions
In this paper, we have presented a numerical technique for solving the inverse source
problem for the steady-state convection-diffusion equation with constant coefficients.
However, it should be noted that although in a practical situation a water pollution
problem is expected to be time-dependent, there are still many situations when in certain
pollution processes the discharge of the contaminant is continuous and the system has
reached the steady state. Thus the steady state convection-diffusion equation can be
used to model many cases. We mention that if we consider the time-dependent
convection-diffusion equation, then one would have to make some important changes in
the BEM formulation considered in this paper for the steady-state case, the two problems
being fundamentally different from the mathematical point of view. The method
presented in this study uses a change of variable to transform the convection-diffusion
equation into a Helmholtz equation with a source term. The constant BEM is then
applied to this equation and the resulting non-linear system of algebraic equations is
solved using an iterative procedure based on the SQP method.

The non-smooth rectangular domain has been the only geometry considered to test
the computational procedure, as this type of domain is more difficult to handle than
smooth domains. However, there is no reason for the method not to work for problems
considered in smooth domains, such as circular or annular domains.

Some test examples have been investigated in the cases of pollution caused by one, two
or three point sources in model river flows. The numerical results showed that the method
provides very accurate and stable results in all these cases. We have also considered some
examples when the method assumes the existence of more sources than there are in reality
and again very accurate results were obtained. However, it was observed that if the
number of sources is overestimated, then the method needs more computational time
before achieving the very good accuracy of the numerical solution. Therefore, if possible, it

Figure 9.
Enlarged region of the
contour plot for the
objective function in
example 6
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is not recommended to use the method with the assumption of more sources than it is
relevant for each particular practical problem under investigation. The case when the
number of sources is underestimated was also investigated and it was seen that the method
provides a numerical solution that best fits the real case. The final value of the objective
function was observed to be an effective indicator about the relevance of the numerical
solution. As a general conclusion, we may say that if the number of sources is unknown,
the method can be applied for different number of sources, and the correct numerical
solution taken to be that when the final value of the objective function is the smallest.

Solving the inverse source problem requires the knowledge of more information on
the boundary of the domain than would be necessary for solving a well-posed direct
problem. This over specified boundary data plays a very important role in the iterative
procedure we have employed to solve the non-linear system of algebraic equations arised
from the application of the BEM, as it is used in the stopping criterion. We have tested
the method on examples where the conditions on the entire boundary, or only a part of it,
were over specified. The method dealt very well with both situations and very little
difference was observed between the two cases in terms of the accuracy of the results or
the rate of convergence. However, we reiterate the fact that if the input values for the
concentration are only available on the boundary (the possibility of dealing with these
situations being an important BEM advantage), then the conditions on at least one part
of the boundary have to be over specified in order for the method to work. Alternatively,
instead of an over specified boundary, one may use internal sampling points.

Some limitations of the method proposed in this paper, which are related with the
magnitude of the Péclet number have also been presented. It has been concluded that the
method can only deal with situations whenPe isO(101). An explanation for this limitation
has also been given and some possible techniques to overcome it have been suggested.

The final subsection of numerical results investigated some features of the
numerical solutions, such as the difference between the calculated and the
measurement values of the concentration at the sampling points, the correlations
between couples of the estimated parameters and the sensitivity of the objective
function to changes in the enforced source location.

Overall, we may conclude that the iterative BEM presented in this paper is
well-suited for solving inverse source problems for steady-state convection-diffusion
equations with constant coefficients which arise from many water pollution source
identification problems.
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